LOW CARBON MARITIME FUELS

DECARBONISING
MARITIME
TRANSPORTATION

Green Shipping PT May 4th, 2023

Galp is an international player in the energy and mobility sectors, focused on developing sustainable solutions to improve people's lives

Galp present throughout the green hydrogen value chain

with the strategy supported on four pillars

Develop of large electrolyser capacity in Sines

Replace all grey H₂ by green H₂ in Sines refinery

Reduce our products carbon footprint

Develop the production of maritime and aviation e-fuels

Active presence in **heavy**duty road transport decarbonisation

Build HRS network in Iberia with direct supply to our **B2B customers**

Key partner of our industrial customers in the energy transition path

Provide green H₂ solutions to our B2B industrial customers

Regulation is pushing for lower emissions in the shipping industry

Moving from sulphur to carbon changes everything

IMO and EU regulatory framework for GHG emissions reduction from international shipping

Maritime transportation accounts for 14% of EU emissions and 3% of global emissions

EU reached a provisional agreement on FuelEU Maritime in March 23

FuelEU Maritime - Annual average carbon intensity reduction compared to 2020

IMO GHG reduction target will be revised in July and could be significantly strengthened

Source: "Maritime Forecast to 2050", DNV

Different possible routes towards zero carbon shipping

There is no miracle solution to decarbonise maritime transportation

Alternative fuel production pathways in shipping

Electrification is not an option for shipping, requiring higher energy density solutions.

Market has three main technological highways to decarbonise:

- 1. Biomass
- 2. Natural Gas + CCS
- 3. Synthetic Fuels

Source: "Maritime Decarbonization Strategy 2022", Maersk-McKinney Moller Center for Zero Carbon Shipping

Each alternative with its challenges and at different stages of development

Massive investments will be required

					Mature and proven	Solutions identified	Major challenges remain
	Energy Carrier	Feedstock availability	Fuel production	Fuel storage, logistics, bunkering	Onboard fuel conversion ¹	Onboard safety and fuel management ²	Regulation ³
Alternative fuels for decarbonization	Fossil fuels						
	e-hydrogen						
	Blue hydrogen						
	e-ammonia						
	Blue ammonia						
	e-methanol						
	Bio-methanol						
	e-methane						
	Bio-methane						
	Bio-oils						

Each option has pros and cons, taking into account economics, technological maturity and required logistics.

Biofuels are already available as a drop-in solution, but will face supply challenges going forward.

Methanol allows for easier logistics, but with a higher cost.

Ammonia and hydrogen face many operational issues and are still in an early stage.

Source: "Maritime Decarbonization Strategy 2022", Maersk-McKinney Moller Center for Zero Carbon Shipping

Our view towards an integrated low carbon portfolio for shipping

Galp plans to support decarbonisation by producing and supplying sustainable fuels for vessels

Biofuels

Galp coprocesses

25 kton/y of HVO in Galp owns a FAME the Sines refinery plant in Sines with diesel and producing 26kton/y plans to start and plans to start production of HVO supplying plant in 2025, which DMA/FAME blends could produce to market in 2023. >200kton of

Feasibility studies for e-methanol production, taking advantage of synergies from green H₂ projects.

E-fuels

Galp plans to have large scale green H₂ production (100MW) in Sines by 2025, expanding to 600+MW by 2030.

Feasibility studies for green ammonia production, taking advantage of synergies from green H₂ projects.

2023

FAME

2023

biodiesel.

2025+

2025+

2030+

